If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64=32t-t^2
We move all terms to the left:
64-(32t-t^2)=0
We get rid of parentheses
t^2-32t+64=0
a = 1; b = -32; c = +64;
Δ = b2-4ac
Δ = -322-4·1·64
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-16\sqrt{3}}{2*1}=\frac{32-16\sqrt{3}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+16\sqrt{3}}{2*1}=\frac{32+16\sqrt{3}}{2} $
| 122x-20=15x-38 | | 7(3-0.5)=3k-5 | | 8b-4(b-2=24 | | x-(-21)=+7 | | 3^(x+5)=5^x-4) | | x+112=1 | | 36-16x-x2=0 | | 2+5y=-4 | | 4f=17•4+3 | | 2+5r-10r2=0 | | 3x2=7x-2 | | 5x-2(x+2)=(-2x+15) | | 6t-3=45 | | 6t×t=0 | | y/1.8=2.9 | | y/2.4=1.1 | | y/1.2=12 | | y/0.3=19 | | 18x+-6=180 | | 4x–2=2x | | 64(t)=64t-t^2 | | 64=64t-t^2 | | 118x+2=2 | | 14x-6=70 | | 14x+70=70 | | 69x+60=x+69 | | 3x+8=−2x+4 | | H(x)=6x+3 | | 3n2-2n-1=0 | | –7x+10=–20–7x+10=–20–7x+10=–20–7x+10=–20–7x+10=–20 | | 1.8x+5.6=12.9+x | | 9x-6+75=75 |